
ATPESC 2013

Algorithmic Adaptations
to Extreme Scale

David Keyes
Division of Computer, Electrical and Mathematical Sciences and Engineering

King Abdullah University of Science and Technology

ATPESC 2013

BSP
generation

Energy-aware
generation

To paraphrase Benjamin Franklin:

“An [infrastructure], if you can keep it.”

ATPESC 2013

A conclusion up front:
n Hope for some of today’s best algorithms to

make the leap
  greater concurrency
  less synchrony
  built-in resilience (“algorithm-based fault tolerance” or

ABFT)

n Programming models will have to be severely
stretched

n Everything should be “on the table” for trades
“over the threshold”

ATPESC 2013

Motivation
n High performance with high productivity on

“the multis”:
  Multi-scale, multi-physics problems in multi-

dimensions
  Using multi-models and/or multi-levels of refinement
  Exploiting polyalgorithms in multiple precisions in

multi-protocol programming styles
  On multi-core, massively multi-processor systems
  Requiring a multi-disciplinary approach

ATPESC 2013

Motivation
n High performance with high(-est possible)

productivity on “the multis”:
  Multi-scale, multi-physics problems in multi-

dimensions
  Using multi-models and/or multi-levels of refinement
  Exploiting polyalgorithms in multiple precisions in

multi-protocol programming styles
  On multi-core, massively multi-processor systems
  Requiring a multi-disciplinary approach

Can’t cover all this in one talk…
Given the architectural stresses, how can new algorithms help?

ATPESC 2013

Purpose of the presentation
n  Increase quality of “co-design” dialog between

application user-developers and systems
software and hardware developers

n Vendors are surprisingly willing
  No longer one type of vendor
  All vendors motivated by some mass market

  Low-power (smartphones, remote sensors, etc.)
  High graphics throughput (gaming, entertainment, etc.)
  High reliability (business, data centers, etc.)

  Unfortunately, computational scientists want all three
  … and we are a relatively small market

Jack Dongarra
Pete Beckman

Terry Moore
Patrick Aerts

Giovanni Aloisio
Jean-Claude Andre

David Barkai
Jean-Yves Berthou

Taisuke Boku
Bertrand Braunschweig

Franck Cappello
Barbara Chapman

Xuebin Chi

Alok Choudhary
Sudip Dosanjh
Thom Dunning
Sandro Fiore

Al Geist
Bill Gropp

Robert Harrison
Mark Hereld

Michael Heroux
Adolfy Hoisie

Koh Hotta
Yutaka Ishikawa
Fred Johnson

Sanjay Kale
Richard Kenway

David Keyes
Bill Kramer

Jesus Labarta
Alain Lichnewsky
Thomas Lippert

Bob Lucas
Barney Maccabe
Satoshi Matsuoka

Paul Messina
Peter Michielse

Bernd Mohr

Matthias Mueller
Wolfgang Nagel

Hiroshi Nakashima
Michael E. Papka

Dan Reed
Mitsuhisa Sato

Ed Seidel
John Shalf

David Skinner
Marc Snir

Thomas Sterling
Rick Stevens
Fred Streitz

Bob Sugar
Shinji Sumimoto

William Tang
John Taylor

Rajeev Thakur
Anne Trefethen
Mateo Valero

Aad van der Steen
Jeffrey Vetter
Peg Williams

Robert Wisniewski
Kathy Yelick

SPONSORS

ROADMAP 1.0

 For background, see
www.exascale.org/iesp

The International Exascale
Software Roadmap,
J. Dongarra, P. Beckman, et al.,
International Journal of High
Performance Computer
Applications 25(1), 2011, ISSN
1094-3420.

ATPESC 2013

Extrapolating exponentials eventually fails
n  Scientific computing at a crossroads w.r.t. extreme scale
n  Proceeded steadily for decades from giga- (1988) to tera-

(1998) to peta- (2008) with
  same SPMD programming model
  same assumptions about who is responsible for what
  same classes of algorithms (cf. 25 yrs. of Gordon Bell Prizes)

n  Exa- is qualitatively different and will be much harder
n  Core numerical analysis and scientific computing will

confront exascale to maintain sponsor relevance
  not a “distraction,” but an intellectual stimulus
  potentially big gains in adapting to new hardware environment
  the journey will be as fun as the destination

ATPESC 2013

Relevance of exascale to users today
n  Modelers are on the front line

  without concurrent research in the form of new models and
mathematics, the passage to exascale hardware will yield little
new scientific fruit

n  Scientists will find the computational power to do things
many have wanted
  more room for creativity in “post-forward” problems (inverse

problems, control, data assimilation, uncertainty quantification)
  scientists will participate in cross-disciplinary integration –

“third paradigm” and “fourth paradigm”
  remember that exascale at the lab means petascale on the desk

n  We suggest some mathematical opportunities, after
(quickly) reviewing the hardware challenges

ATPESC 2013

Why exa- is different

(Intel Sandy Bridge, 2.27B transistors)

 after DARPA report of P. Kogge (ND) et al. and T. Schulthess (ETH)

Going across the die will require an order of magnitude more!
DARPA study predicts that by 2019:
u  Double precision FMADD flop: 11pJ
u  cross-die per word access (1.2pJ/mm): 24pJ (= 96pJ overall)

Which steps of FMADD take more energy?

input
input

input

output

four

ATPESC 2013

Today’s power costs per operation

 projections c/o J. Shalf (LBNL)

Remember that a pico (10-12) of something done exa (1018)
times per second is a mega (106)-somethings per second
u  100 pJ at 1 Eflop/s is 100 MW (for the flop/s only!)
u  In the USA, 1 MW-year costs $1M ($0.12/KW-hr × 8760 hr/yr)

u  You “use” 1.4 KW continuously on average

Operation approximate energy cost

DP FMADD flop 100 pJ

DP DRAM read-to-register 4800 pJ

DP word transmit-to-neighbor 7500 pJ

DP word transmit-across-system 9000 pJ

ATPESC 2013

Why exa- is different

Moore’s Law (1965) does not end but
Dennard’s MOSFET scaling (1972) does

Eventually processing will be
limited by transmission

Robert Dennard, IBM
(inventor of DRAM, 1966)

ATPESC 2013

What will first “general purpose” exaflop/s
machines look like?

n Hardware: many potentially exciting paths beyond
today’s CMOS silicon-etched logic, but not
commercially at scale within the decade

n Software: many ideas for general-purpose and
domain-specific programming models beyond
“MPI + X”, but not penetrating the main CS&E
workforce within the decade
  “X” is OpenMP, CUDA, OpenACC, pthreads, etc.

ATPESC 2013

Tianhe-2 by Inspur / NUDT / Intel (June 2013)

Main system: 32K Ivy Bridge + 48K Xeon Phi chips ~55 PF/s

*Front-end: 4K Galaxy FT-1500 chips, 59 TF/s

ATPESC 2013

Tianhe-2 vs. envisioned exascale hardware:
a heterogeneous, distributed memory
GigaHz KiloCore MegaNode system

Tianhe-2 (2013) Exa (2020) Ratio to go
Number of nodes 16,000

 (each 2 Ivy + 3 Phi)
1,000,000 ~60

Node concurrency 24 Ivy + 171 Phi
= 195 cores

1,000 ~5

Node memory (GB) 88 Ivy + 8 Phi = 96 64 (1)
Node peak perf (GF/s) 422 Ivy + 3,009 Phi

= 3,431
1,000 (1)

Total concurrency 3,120,000 1 B ~320
Total memory (PB) 1.536 64 ~40
Total peak perf (PF/s) 54.9 1,000 ~20
Power (MW) 17.8

(+ 24 MW cooling !)
20 (1)

 after P. Beckman (ANL) et al.

ATPESC 2013

Some exascale themes

  Clock rates cease to increase while arithmetic capacity
continues to increase dramatically w/concurrency
consistent with Moore’s Law

  Storage capacity diverges exponentially below
arithmetic capacity

  Transmission capacity (memory BW and network BW)
diverges exponentially below arithmetic capacity

  Mean time between hardware interrupts shortens
  Billions of dollars of scientific software hang in the

balance until better algorithms arrive to span the
architectural gap

ATPESC 2013

Implications of operating on the edge
n  Draconian reduction required in power per flop and per

byte will make computing and copying data less reliable
  voltage difference between “0” and “1” will be reduced
  circuit elements will be smaller and subject to greater

physical noise per signal
  there will be more errors that must be caught and corrected

n  Power may be cycled off and on or clocks slowed and
speeded based on compute schedules and based on cooling
capacity
  makes per node performance rate unreliable

ATPESC 2013

Implications of operating on the edge
n  Expanding the number of nodes (processor-memory units)

beyond 106 would not a serious threat to algorithms that lend
themselves to well-amortized precise load balancing
  provided that the nodes are performance reliable

n  A real challenge is usefully expanding the number of cores on
a node to 103

  must be done while memory and memory bandwidth per node
expand by (at best) ten-fold less (basically “strong” scaling)

n  It is already orders of magnitude slower to to retrieve an
operand from main DRAM memory than to perform an
arithmetic operation – will get worse by another
  “almost all” operands must come from registers or upper cache

ATPESC 2013

“Missing” mathematics
n New formulations with

  greater arithmetic intensity (flops per bytes moved
into and out of registers and upper cache)

  reduced communication
  reduced synchronization
  assured accuracy with (adaptively) less floating-

point precision
  algorithmic resilience to many types of faults

n Quantification of trades between limiting resources
n Plus all of the exciting analytical agendas that

exascale is meant to exploit

ATPESC 2013

Arithmetic intensity illustration

Roofline model of
numerical kernels on
an NVIDIA C2050
GPU (Fermi). The
‘SFU’ label is used
to indicate the use of
special function
units and ‘FMA’
indicates the use of
fused multiply-add
instructions.

(The order of fast
multipole method
expansions was set
to p = 15.)

c/o L. Barba (BU); cf. “Roofline Model” of S. Williams (Berkeley)

ATPESC 2013

Research in progress: FMM vs AMG
preconditioning, strong scaling on Stampede*

c/o Rio Yokota, KAUST
* Poisson problem, Dirichlet BCs handled via BIE for FMM (cost included)

ATPESC 2013

n  Classical: amortize communication over many power/reduce
steps
  s-step Krylov methods: power kernels with wide halos and extra

orthogonalization
  Block Krylov methods: solve b several independent systems at

once with improved convergence (based on λmax/λb rather than
λmax/λmin)

  “tall skinny QR” (n×m): recursively double the row-scope of
independent QRs – log p messages for p processors (vs. n log p)

n  Invade classical steps:
  operations dynamically scheduled with DAGs
  NUMA-aware (local) work-stealing

Reduction of frequency of communication
and synchronization for Ax=b

ATPESC 2013

Reduction of domain of synchronization

•  Nonlinear Schwarz replaces a Newton method for a global
nonlinear system, F(u)=0,
–  which computes a global distributed Jacobian matrix and

synchronizes globally in both the Newton step and in solving the
global linear system for the Newton

•  … with a set of local problems on subsets of the global
nonlinear system
–  each local problem has only local synchronization
–  all of the linear systems for local Newton updates have only local

synchronization
–  there is still global synchronization in a number of steps hopefully

much fewer than required in the original Newton method

ATPESC 2013

How are most workhorse simulations
implemented at the infra-petascale today?

n  Iterative methods based on data decomposition and
message-passing
  each individual processor works on a portion of the original

problem and exchanges information at its boundaries with
other processors that own portions with which it interacts
causally, to evolve in time or to establish equilibrium

  computation and neighbor communication are both fully
parallelized and their ratio remains constant in weak scaling

n The programming model is SPMD/BSP/CSP
  Single Program, Multiple Data
  Bulk Synchronous Programming
  Communicating Sequential Processes

n  PETSc, Trilinos, hypre, etc.

ATPESC 2013

Estimating scalability
 n  Given complexity estimates of the leading terms of:

  the concurrent computation (per iteration phase)
  the concurrent communication
  the synchronization frequency

n  And a model of the architecture including:
  internode communication (network topology and protocol reflecting

horizontal memory structure)
  on-node computation (effective performance parameters including

vertical memory structure)

n  One can estimate optimal concurrency and optimal
execution time
  on per-iteration basis
  simply differentiate time estimate in terms of problem size N and

processor number P with respect to P

ATPESC 2013

3D stencil computation weak scaling
(assume fast local network, tree-based global reductions)

n  Total wall-clock time per iteration (ignoring local comm.)

n  For optimal P, , or

 or

n  P can grow linearly with N, and running time increases

“only” logarithmically – as good as weak scaling can be!
n  Problems: (1) assumes perfect synchronization,
 (2) log of a billion may be “large”

T (N,P) = A N
P
+C logP

!T
!P

= 0 !A N
P2

+
C
P
= 0

Popt =
A
C
N

ATPESC 2013

SPMD parallelism w/ domain decomposition:
an endangered species?

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23 A21 A22
rows assigned

to proc “2”

ATPESC 2013

Workhorse innards: e.g., Krylov-Schwarz,
a bulk synchronous implicit solver

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

Idle time due to load imbalance becomes a
challenge at, say, one billion cores, when
one processor can hold up all of the rest at
a synchronization point

P1:

P2:

Pn:


communication imbalance computation imbalance

ATPESC 2013

Our programming idiom is nested loops, e.g.,
Newton-Krylov-Schwarz

 for (k = 0; k < n_Newton; k++) {
 compute nonlinear residual and Jacobian

 for (j = 0; j < n_Krylov; j++) {
 forall (i = 0; i < n_Precon ; i++) {

 solve subdomain problems concurrently
 } // End of loop over subdomains
 perform Jacobian-vector product
 enforce Krylov basis conditions
 update optimal coefficients
 check linear convergence
 } // End of linear solver
 perform DAXPY update
 check nonlinear convergence
 } // End of nonlinear loop

Newton
loop

Krylov
loop

concurrent
preconditioner

loop

Outer loops (not shown): continuation, implicit timestepping, optimization

ATPESC 2013

Dataflow illustration: generalized eigensolver

c/o H. Ltaief (KAUST)

ATPESC 2013

These loops, with their artifactual orderings,
can be replaced with DAGs

  Diagram shows a
dataflow ordering of the
steps of a 4×4
symmetric generalized
eigensolver

  Nodes are tasks, color-
coded by type, and
edges are data
dependencies

  Time is vertically
downward

c/o H. Ltaief (KAUST)

ATPESC 2013

Co-variance matrix inversion on hybrid*
CPU-GPU environment with DAG scheduling

0.5 1 1.5 2 2.5
x 104

50

100

150

200

250

300

350

400

450

500

Matrix size

G
flo

p/
s

Tile Hybrid CPU−GPU
MAGMA
PLASMA
LAPACK

Dynamic
Runtime
System

10X

c/o Huda Ibeid (KAUST) et al. HiPC’11 (Bangalore)

* On 8 Intel Xeons and 2 NVIDIA Teslas using StarPU (INRIA)

ATPESC 2013

Research in progress: locality preserving work-
stealing on Cholesky solver gets 93% of DGEMM*

c/o Rabab AlOmairy (KAUST), MS thesis

* On AMD “Istanbul” 8439 SE with 8 sockets, 6 cores per socket, using OmpSs

ATPESC 2013

Multiphysics w/ legacy codes:
an endangered species?

n  Many multiphysics codes operate like this, where the models may
occupy the same domain in the bulk (e.g., reactive transport) or
communicate at interfaces (e.g., ocean-atmosphere)*

n  The data transfer cost represented by the blue and green arrows
may be much higher than the computation cost of the models,
even apart from first-order operator splitting error and possible
instability

Model 1

Model 2
(subcycled)

*see “Multiphysics simulations: challenges and opportunities” (IJHPCA)

ATPESC 2013

Many codes have the algebraic and software
structure of multiphysics

  Exascale is motivated by these:
  uncertainty quantification, inverse problems,

optimization, immersive visualization and steering

  These may carry auxiliary data structures to/from
which blackbox model data is passed and they act
like just another “physics” to the hardware
  pdfs, Lagrange multipliers, etc.

  Today’s separately designed blackbox algorithms
for these may not live well on exascale hardware: co-
design may be required due to data motion

ATPESC 2013

Multiphysics layouts must invade blackboxes

ocean
atm

ice

c/o W. D. Gropp (UIUC)

n  Each application must
first be ported to
extreme scale
(distributed, hierarchical
memory)

n  Then applications may
need to be interlaced at
the data structure level
to minimize copying and
allow work stealing at
synchronization points

ATPESC 2013

ATPESC 2013

Multiphysics modeling of CO2 sequestration by
coupling PDEs and molecular dynamics

c/o Kai Bao (KAUST) et al., SPE’13

Blue Gene/P strong scaling –
Reservoir Simulator

Blue Gene/P strong scaling –
Molecular Dynamics

ATPESC 2013

Bad news/good news (1)
  One may have to explicitly control data

motion
  carries the highest energy cost in the exascale

computational environment

  One finally will get the privilege of
controlling the vertical data motion
  horizontal data motion under control of users under Pax

MPI, already
  but vertical replication into caches and registers was

(until now with GPUs) scheduled and laid out by
hardware and runtime systems, mostly invisibly to users

ATPESC 2013

Bad news/good news (2)
  “Optimal” formulations and algorithms may lead

to poorly proportioned computations for exascale
hardware resource balances
  today’s “optimal” methods presume flops are expensive and

memory and memory bandwidth are cheap

  Architecture may lure users into more
arithmetically intensive formulations (e.g., fast
multipole, lattice Boltzmann, rather than mainly
PDEs)
  tomorrow’s optimal methods will (by definition) evolve to

conserve what is expensive

ATPESC 2013

Bad news/good news (3)

  Hardware nonuniformity may force
abandonment of the Bulk Synchronous
Programming (BSP) paradigm
  it will be impossible for the user to control load

balance sufficiently to make it work

  Hardware and algorithmic nonuniformity will
be indistinguishable at the performance level
  good solutions for the dynamically load balancing in

systems space will apply to user space, freeing users

ATPESC 2013

Bad news/good news (4)
  Fully deterministic algorithms may simply come

to be regarded as too synchronization-vulnerable
  Rather than wait for data, we may infer it, taking into account

sensitivity to poor guesses, and move on

  A rich numerical analysis of algorithms that
make use of statistically inferred “missing”
quantities may emerge

ATPESC 2013

Bad news/good news (5)
  Fully reliable executions may simply come to be regarded

as too costly/synchronization-vulnerable
  Algorithmic-based fault tolerance (ABFT)will be much

cheaper than hardware and OS-mediated reliability
  Developers will partition their data and their program units into

two sets
  A small set that must be done reliably (with today’s standards

for memory checking and IEEE ECC)
  A large set that can be done fast and unreliably, knowing the

errors can be either detected, or their effects rigorously bounded

  Examples in direct and iterative linear algebra
  anticipated by Von Neumann, 1956 (“Synthesis of reliable

organisms from unreliable components”)

ATPESC 2013

Bad news/good news (6)

  Default use of (uniform) high precision may come to an
end, as wasteful of storage and bandwidth
  Representation of a smooth function in a hierarchical basis

requires fewer bits than storing its nodal values
  we will have to compute and communicate “deltas” between

states rather than the full state quantities, as we did when double
precision was expensive (e.g., iterative correction in linear
algebra)

  a combining network node will have to remember not just the last
address, but also the last values, and send just the deltas

  Equidistributing errors properly while minimizing
resource use will lead to innovative error analyses in
numerical analysis

ATPESC 2013

Research in progress: reducing precision in the new
QDHWeig eigensolver (Higham, 2013)

c/o Dalal Sukkari (KAUST), MS thesis

* Dual-socket 8-core (16 cores total), Intel(R) Xeon(R) CPU E5-2650

ATPESC 2013

How will PDE computations adapt?
n  Programming model will still be message-passing (due to

large legacy code base), adapted to multicore or hybrid
processors beneath a relaxed synchronization MPI-like
interface

n  Load-balanced blocks, scheduled today with nested loop
structures will be separated into critical and non-critical
parts

n  Critical parts will be scheduled with directed acyclic
graphs (DAGs)

n  Noncritical parts will be made available for work-stealing
in economically sized chunks

ATPESC 2013

Adaptation to
asynchronous programming styles

n  To take full advantage of such asynchronous algorithms, we
need to develop greater expressiveness in scientific
programming
  create separate threads for logically separate tasks, whose priority is

a function of algorithmic state, not unlike the way a time-sharing OS
works

  join priority threads in a directed acyclic graph (DAG), a task graph
showing the flow of input dependencies; fill idleness with noncritical
work or steal work

n  Steps in this direction
  Asynchronous Dynamic Load Balancing (ADLB) [Lusk (Argonne),

2009]
  Asynchronous Execution System [Steinmacher-Burrow (IBM), 2008]

ATPESC 2013

n  Can write code in styles that do not require artifactual
synchronization

n  Critical path of a nonlinear implicit PDE solve is essentially
… lin_solve, bound_step, update; lin_solve, bound_step, update …

n  However, we often insert into this path things that could be done
less synchronously, because we have limited language
expressiveness
  Jacobian and preconditioner refresh
  convergence testing
  algorithmic parameter adaptation
  I/O, compression
  visualization, data mining

Evolution of Newton-Krylov-Schwarz:
breaking the synchrony stronghold

ATPESC 2013

Sources of nonuniformity
n  System

  Already important: manufacturing, OS jitter, TLB/cache
performance variations, network contention,

  Newly important: dynamic power management, more soft errors,
more hard component failures, software-mediated resiliency, etc.

n  Algorithmic
  physics at gridcell/particle scale (e.g., table lookup, equation of

state, external forcing), discretization adaptivity, solver adaptivity,
precision adaptivity, etc.

n  Effects of both types are similar when it comes to waiting
at synchronization points

n  Possible solutions for system nonuniformity will improve
programmability, too

ATPESC 2013

Programming practice
n  Prior to possessing exascale hardware, users can prepare

themselves by exploring new programming models
  on manycore and heterogeneous nodes

n  Attention to locality and reuse is valuable at all scales
  will produce performance paybacks today and in the future
  domains of coherence will be variable and hierarchical

n  New algorithms and data structures can be explored
under the assumption that flop/s are cheap and moving
data is expensive

ATPESC 2013

Path for scaling up applications
n  “Weak scale” applications up to distributed memory limits

  proportional to number of nodes
n  “Strong scale” applications beyond this

  proportional to cores per node/memory unit
n  Scale the workflow, itself

  proportional to the number of instances (ensembles)
  integrated end-to-end simulation

n  Algorithm-architecture co-design process is staged, with
any of these types of scaling valuable by themselves

n  Big question: does the software for co-design factor? Or is
all the inefficiency at the data copies at interfaces between
the components after a while?

ATPESC 2013

Required software enabling technologies
 Model-related

  Geometric modelers
  Meshers
  Discretizers
  Partitioners
  Solvers / integrators
  Adaptivity systems
  Random no. generators
  Subgridscale physics
  Uncertainty

quantification
  Dynamic load balancing
  Graphs and

combinatorial algs.
  Compression

 Development-related
u  Configuration systems
u  Source-to-source

translators
u  Compilers
u  Simulators
u  Messaging systems
u  Debuggers
u  Profilers

 Production-related
u  Dynamic resource

management
u  Dynamic performance

optimization
u  Authenticators
u  I/O systems
u  Visualization systems
u  Workflow controllers
u  Frameworks
u  Data miners
u  Fault monitoring,

reporting, and recovery

High-end computers come
with little of this stuff.

Most has to be contributed
by the user community

ATPESC 2013

	
 	
 	
 CS	

Math	

Applica-ons	

Enabling	

technologies	

respond	
 to	
 all	

Many	

applica-ons	

drive	

U. Schwingenschloegl

A. Fratalocchi G. Schuster F. Bisetti R. Samtaney

G. Stenchikov

I. Hoteit V. Bajic M. Mai

ATPESC 2013

DOE’s Exascale Mathematics Working Group

n  74 fascinating 2-page whitepapers contributed by the
international community to the EMWG at

 https://collab.mcs.anl.gov/display/examath/Submitted+Papers

n  To be discussed this coming 20-21 August 2013 in DC
n  Randomized algorithms
n  On-the-fly data compression
n  Mining massive data sets
n  Algorithmic-based fault tolerance
n  Adaptive precision algorithms
n  Concurrency from dimensions beyond space (time, phase

space, stochastic parameters)
n  etc.

ATPESC 2013

Randomized algorithms
in subspace correction methods

n  Solve Ax=b by pointwise
relaxation

n  Gauss-Seidel (1823)
n  deterministic and pre-

ordered
n  Southwell (1935)

n  deterministic and
dynamically ordered

n  Griebel-Oswald (2011)
n  random (and

dynamically ordered)
n  Excellent convergence w/

fault tolerance and
synchronization reduction

c/o M. Griebel et al. (U Bonn)

ATPESC 2013

Hierarchical representations for extreme data
n  Saving most simulation results to persistent storage will be

impractical; instead hybrid in situ / in transit analysis
n  Challenges:

n  On-the-fly compression

n  Algorithmic idea: sparse grids

O(nd)!O(n " (logn)d#1)

O(n! p)"O(n! p # (logn)k)

Storage complexity

(spatial dimension d)

Representation accuracy

(order p; k depends on p, d)

c/o H. Bungartz et al. (TU Munich)

ATPESC 2013

How do sparse representations work?

c/o J. Garcke et al. (U Bonn)

ATPESC 2013

Acknowledgment:
 today’s Peta-op/s machines

1012 neurons @ 1 KHz = 1 PetaOp/s
1.4 kilograms, 20 Watts

See 2011 special issue of Comptes Rendus

Exaflop/s: The why and the
how, D. E. Keyes, Comptes
Rendus de l’Academie des
Sciences 339, 2011, 70—77.

Thank you

 ششككرراا

david.keyes@kaust.edu.sa

KAUST is
recruiting! Your

office here J

